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Abstract

In this contribution, we introduce a new error-diffusion scheme that
produces higher quality results. The algorithm is faster than the
universally used Floyd-Steinberg algorithm, while maintaining its
original simplicity. The efficiency of our algorithm is based on a
deliberately restricted choice of the distribution coefficients. Its
pleasing nearly artifact-free behavior is due to the off-line mini-
mization process applied to the basic algorithm’s parameters (dis-
tribution coefficients). This minimization brings the Fourier spectra
of the selected key intensity levels as close as possible to the cor-
responding “blue noise” spectra. The continuity of the algorithm’s
behavior across the full range of intensity levels is achieved thanks
to smooth interpolation between the distribution coefficients corre-
sponding to key levels. This algorithm is applicable in a wide range
of computer graphics applications, where a color quantization algo-
rithm with good visual properties is needed.
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1 Introduction

Since its introduction in 1975 by Floyd and Steinberg [7], the error-
diffusion (E-D) algorithm has attracted much attention in the graph-
ics community (see for example [10, 13, 25]. The main advantage
of the initial version of the algorithm is its simplicity combined with
the fairly good overall visual quality of the produced binary images.
In addition, it is a public domain algorithm. For all these reasons, it
became very popular in various graphics applications where color
quantization is combined with spatial distribution, such as display
visualization using a limited color palette.

Let us recall the initial Floyd-Steinberg E-D algorithm (see Fig
1). Pixels are processed according to a processing path, which is
a simple sequence of scan-lines in the original version of the al-
gorithm. The input signal intensity level is compared to a fixed
threshold, and the output binary signal is generated according to
this comparison. The difference between the input and the output
signals (quantization error) is distributed to the 8-connected neigh-
bors which have not yet been processed, according to distribution
coefficients (7/16, 3/16, 5/16 and 1/16 in the original version).

Still, the Floyd-Steinberg E-D algorithm contains a number of
inherent drawbacks. First, this algorithm produces clearly iden-
tifiable visually harmful artifacts in highlights and in dark areas,
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sometimes referred to as worm artifacts (see in [4, 21, 23], also de-
tailed analysis in [13]). Second, at certain intensity levels, close to
1/2, 1/3, 2/3, 1/4, 3/4 etc. patches of regular structure may appear.
Not only are such patches visually disturbing, but also the uneven
transition between “structured” and “unstructured” areas may be
clearly visible and undesirable (see Fig 4). This phenomenon can
be greatly amplified by the dot gain when the visualization media
is printed paper. In some extreme cases analyzed in [19], it may be
questionable whether Floyd-Steinberg E-D algorithm could ever be
used for printing purposes. Computer displays have much smaller
inter-pixel dependency. Nevertheless, harmful visual perturbations
due to uneven patches of regular structures should be avoided when-
ever possible.

In order to cope with the major drawbacks mentioned above, var-
ious solutions have been proposed. Let us enumerate some simple
improvements to basic E-D algorithm reported in the literature:

� modification of the processing path: usage of serpentine path
instead of scanlines [23], or space-filling curves [28, 26, 27].
Usually, this improves the behavior for some intensity levels,
and worsens it for others. Nevertheless, the serpentine path
became a standard. The algorithm described in [27] shows
the best results in this category; still, it shows some visually
perturbing artifacts (see Fig 3).

� modification of the distribution range and distribution coef-
ficients: distribution to second-level unprocessed neighbors
(neighbors of neighbors) [9, 22] or use of different distribu-
tion coefficients [21]. Eschbach suggested applying two dis-
tinct sets of distribution coefficients, one set for highlights and
dark areas, and another set for the rest [4]. It was an excellent
idea, but unfortunately a visually disturbing discontinuity ap-
pears on the boundary between two areas where two distinct
sets of coefficients are applied. Clearly, we build our algo-
rithm upon Eschbach’s idea, solving the problem of discon-
tinuity. We propose a simple and straightforward method for
calculating the distribution coefficients that provide satisfac-
tory visual quality.

� variation of the threshold: usage of an input-dependent thresh-
old instead of a constant one. Eschbach and Knox [6] propose
inversely-proportional dependence. This permits the control
of inherent edge enhancement, but has little impact on the
structure-artifact effect.

None of the proposed methods in this family of simple improve-
ments can be considered as fully satisfactory. Usually, they show
their drawbacks in a true torturous test that contains patches of all
intensity levels, big enough to show the artifact structure proper to
each intensity level (see Fig 4 bottom).

The best visual quality, in our personal evaluation, has been
achieved using the algorithm proposed by Shiau and Fan [21]. Alas,
like many other proprietary algorithms, it is covered by a patent
[20]. For various reasons, a considerable part of research in halfton-
ing has been done as part of industrial research, and its usage is
restricted by patents and intellectual property laws.

In the family of sophisticated improvements, the output is some-
times better than that of the simple improvements enumerated
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above. Nevertheless, these algorithms usually suffer from two big
drawbacks: they are too computationally costly to be implemented
in simple and fast visualization software (e.g. see Eschbach’s
pulse-density modulation [5], Allebach’s direct binary search-based
halftoning [2, 14], or Marcu’s roadmap [15]), and they are often
proprietary, which considerably limits their potential application for
the computer graphics community. The best implementation of the
DBS-based halftoning is approximately 10 times slower than a typ-
ical error-diffusion, according to Jan Allebach’s estimation [1].

Yet another solution consists in building threshold matrices such
as Ulichney’s “void-and-cluster” technique [24], or Mitsa and Park-
er’s “blue noise mask” [16]. In both cases, a threshold matrix is
built to be used with standard dithering, in such a way that its out-
put mimics the behavior of a typical error-diffusion having “blue
noise” spectrum. These solutions are inherently fast. Nevertheless,
once again, they suffer from two drawbacks. First, the matrices
are not publically available. Secondly, the output of either “void-
and-cluster” or “blue noise mask” techniques appear less sharp, i.e.
a bit blurry when compared with that produced with a typical E-
D technique. The phenomenon of additional sharpness of E-D is
due to its inherent edge enhancement, which is well studied in the
literature [11, 12]. It has been shown that the effect of edge en-
hancement of E-D is very close to the effect of a simple Laplacian
or a similar sharpening filter [6, 12]. Consequently, an equivalent
edge enhancement in point-processes can be achieved by appropri-
ate pre-filtering. Still, such a pre-filtering may be prohibitive for
real-time visualization, due to its extra cost.

It is generally accepted that E-D algorithms achieve better qual-
ity at low resolution, compared to other fast halftoning methods:
dispersed or clustered dithering, blue-noise-based point-processes
without pre-filtering [10, 13, 23]. It is important to mention that
practically all public domain quantizers do use the Floyd-Steinberg
E-D algorithm.

2 Proposed error-diffusion algorithm

The algorithm we propose in this contribution is as simple as the
original Floyd-Steinberg E-D algorithm; however it incorporates
a few crucial differences: we use a serpentine processing path,
we distribute errors to three instead of four neighbors (only to
N10;N�11 and N01 as shown in Fig 1), and we use 256 different
distribution coefficient sets for each of the 256 input intensity lev-
els (in this section we suppose, without loss of generality that the
input one-channel signal is sampled on 8 bits, i.e. it has 256 distinct
levels of intensity). The choice of three distribution coefficients in-
stead of four was deliberate in order to reduce the number of di-
mensions for the optimization (see below), as well as to increase
the algorithm’s execution speed. Two coefficients would be even
better; unfortunately, we did not find satisfactory solutions in the
two-dimensional parametric space.

It is obvious that in this form the proposed algorithm conserves
the simplicity and the efficiency of the original Floyd-Steinberg
error-diffusion algorithm. In fact, it is even faster, thanks to a
smaller number of arithmetical operations and memory accesses.
The fact that it uses input-dependent distribution coefficients does
not imply any conceptual or programming sophistication, because
the distribution coefficients can be hardcoded in the program.

In the rest of this section we shall present the method that we
used in order to determine 256 input-dependent distribution coef-
ficient sets. We based our research on the following empirical as-
sumptions:

A1 The E-D algorithm’s output is considered to be good when its
Fourier spectrum is close to the “blue noise” [23, 12]. An ape-
riodic structure is said to have the blue noise property when its
Fourier spectrum is radially symmetric, and does not possess

energy at low frequencies, as shown in Fig 2e. The character-
istic frequencyfg of the blue noise is determined by the mean
distance between black pixels of a patch for a given intensity
level.

A2 If in our algorithm we have a set of distribution coefficients
D1
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generate two distinct artifact structures, then for all interme-
diate intensity levelsgi betweeng1 andg2, the artifact struc-
ture varies very smoothly when the distribution coefficients
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betweenD1 andD2. The simplest case is a linear interpola-
tion betweenD1 andD2. For any intensity levelgi, the sum
of the distribution coefficients must be 1, in order to preserve
the tone reproduction fidelity:di

10+di
�11+di

01= 1.

A3 There are intensity levels that are potentially problematic.
The original Floyd-Steinberg E-D algorithm produces more or
less strong artifacts at intensity levels 1/255, 64/255, 85/255,
127/255. We call them key levels.

A4 Artifact structures for input intensity levelsgj andg255� j are
identical, with black and white values inverted. This permits
us to restrict our search to half-range [0..127], then extend it
symmetrically around 127.5.

Based on these assumptions, we propose a method for finding all
256 sets of distribution coefficientsDi

= fdi
10;d

i
�11;d

i
01g:

Step 1. For each intensity level among potentially problematic
ones (key levels in assumption A3) we look for a set of distribu-
tion coefficientsDkey

= fdkey
10 ;dkey

�11;d
key
01 g that produce the output

having Fourier spectrum as close as possible to blue noise (assump-
tion A1). This is a classical minimization problem [18]. We start
with an arbitrary set of distribution coefficients, sayf1/3,1/3,1/3g,
then vary them by trying to minimize the total error term between
the obtained Fourier spectrum and the known blue-noise spectrum.
The cost function, used in the minimization, contains two compo-
nents: (1) the correlation between the achieved Fourier spectrum,
and the radially-symmetrical “ideal” blue-noise spectrum calcu-
lated for this intensity (see [23, 25]), and (2) a weighted sum of
all Fourier picks in the range of low frequencies, which are respon-
sible for low-frequency artifacts, such as alignments or worms. The
proportion between these two components has been chosen experi-
mentally. For calculations, we use relatively big (1024x1024) uni-
form patches of constant input intensity.

Step 2. Between two key intensity levelsg1 andg2 having dis-
tribution coefficient setsD1 andD2, we apply a linear interpolation
between corresponding distribution coefficients (assumption A2).
The algorithm behaves smoothly betweeng1 andg2, but not nec-
essarily well. For some intermediate input levels, it may produce
visually unpleasant structure. If this is the case, we add this “bad”
intermediate level to the initial set of key intensity levels, and we
repeat the whole process starting from Step 1. The key intensity
levels as used in this paper are highlighted in Fig 4.

Step 3. We extend the half-range [0..127] symmetrically around
127.5 (assumption A4):D0 = D255;D1 = D254; :::;D127= D128:

All calculations presented above are done off-line. Once all 256
distribution coefficients are found, they can be statically used in the
proposed variable-coefficient E-D algorithm. Appendix I enumer-
ates the set of proposed distribution coefficients. Fig 4 compares
the output of the proposed E-D algorithm to the serpentine-path
Floyd-Steinberg and Shiau-Fan E-D algorithms.

Extension of the proposed algorithm to color (separate color
channels) and to multiple-level output are analogous to that of the
Floyd-Steinberg E-D algorithm [10].



The proposed algorithm may be combined with the threshold
modulation introduced in [6], in order to control inherent edge en-
hancement, when needed. With a constant threshold, our algo-
rithm produces visually appealing output images, with the degree
of sharpness appropriate for most of visualization tasks.

3 Conclusions and Future Work

We have presented a simple and efficient variable-coefficient error-
diffusion algorithm. It solves important visual problems inherent
to the original Floyd-Steinberg algorithm. At the same time, it is
faster than most other error-diffusion algorithms, and it produces
sharp, visually pleasing output.

The efficiency of our algorithm is based on a deliberately re-
stricted choice of the distribution coefficients. Its attractive nearly
artifact-free behavior is due to the off-line minimization process
applied to the set of the basic algorithm’s parameters (distribution
coefficients). This minimization brings the Fourier spectra of the
selected key intensity levels as close as possible to the correspond-
ing “blue noise” spectra. The continuity of the algorithm’s behav-
ior across the full range of intensity levels is achieved thanks to the
smooth interpolation between the key level distribution coefficients.

Although our algorithm produces fairly satisfactory output, we
hope to improve these results in the future. A study of a more so-
phisticated cost function for the minimization process is under way.
Ideally, all structure anomalies, even very local and non-repetitive
ones, should be taken into account in the minimization process. We
expect that oriented multi-resolution feature-detecting filters will
provide better support for the cost function than actual Fourier am-
plitude spectra. Another promissing research direction would be a
more systematic study of influence of distribution of key levels on
the achieved quality.

Our algorithm has been developed in an academic framework.
It is our firm intention to put it into the public domain, and pro-
vide a core implementation, publicly available from our web site1.
Further improvements will be available at the same location.

This error-diffusion algorithm belongs to a family of fundamen-
tal algorithms for computer graphics since it can be applied to a
large variety of applications where the visual quality of the out-
put with a restricted palette plays an important role. It may be ef-
ficiently used in general-purpose visualization, in network-based
imaging, in printing, in quantizers attached to compression algo-
rithms, etc.

Computers become faster and faster; but this does not mean that
considerations of speed become unimportant in digital halhtoning.
With today’s proliferation of small and portable devices, the visu-
alization software may run on a cheap device having restricted re-
sources. We believe that a simple and efficient halftone algorithm
may be particularly useful in such devices.

The algorithm presented in this article is very simple, and we
believe this to be one of its main virtues. For anyone who might
think that it is too simple, let us cite Karl Menger, a famous Austrian
mathematician, who once said that “one should never reason that an
idea is too simple to be correct” [8].

We hope that the simplicity of the presented algorithm, along
with its visual quality and public availability, will lead to its adop-
tion by the computer graphics community.
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APPENDIX I

This table shows the distribution coefficients in form ofi : A10;A�11;A01 for the input levelsi in the interval [0..127].
d10(i) = A10(i)=M(i);d

�11(i) = A
�11(i)=M(i);d01(i) = A01(i)=M(i); M(i) = (A10(i)+A

�11(i)+A01(i)), and
D(i) = fd10(i);d�11(i);d01(i)g== D(255� i). Highlighted are the key levels.

32: 20, 10, 19
33: 1937,1000,1767
34: 977, 520, 855
35: 657, 360, 551
36: 71, 40, 57
37: 2005,1160,1539
38: 337, 200, 247
39: 2039,1240,1425
40: 257, 160, 171
41: 691, 440, 437
42: 1045,680, 627
43: 301, 200, 171
44: 177, 120, 95
45: 2141,1480,1083
46: 1079,760, 513
47: 725, 520, 323
48: 137, 100, 57
49: 2209,1640,855
50: 53, 40, 19
51: 2243,1720,741
52: 565, 440, 171
53: 759, 600, 209
54: 1147,920, 285
55: 2311,1880,513
56: 97, 80, 19
57: 335, 280, 57
58: 1181,1000,171
59: 793, 680, 95
60: 599, 520, 57
61: 2413,2120,171
62: 405, 360, 19
63: 2447,2200,57

64: 11, 10, 0
65: 158, 151, 3
66: 178, 179, 7
67: 1030,1091,63
68: 248, 277, 21
69: 318, 375, 35
70: 458, 571, 63
71: 878, 1159,147
72: 5, 7, 1
73: 172, 181, 37
74: 97, 76, 22
75: 72, 41, 17
76: 119, 47, 29
77: 4, 1, 1
78: 4, 1, 1
79: 4, 1, 1
80: 4, 1, 1
81: 4, 1, 1
82: 4, 1, 1
83: 4, 1, 1
84: 4, 1, 1
85: 4, 1, 1
86: 65, 18, 17
87: 95, 29, 26
88: 185, 62, 53
89: 30, 11, 9
90: 35, 14, 11
91: 85, 37, 28
92: 55, 26, 19
93: 80, 41, 29
94: 155, 86, 59
95: 5, 3, 2

96: 5, 3, 2
97: 5, 3, 2
98: 5, 3, 2
99: 5, 3, 2
100: 5, 3, 2
101: 5, 3, 2
102: 5, 3, 2
103: 5, 3, 2
104: 5, 3, 2
105: 5, 3, 2
106: 5, 3, 2
107: 5, 3, 2
108: 305, 176, 119
109: 155, 86, 59
110: 105, 56, 39
111: 80, 41, 29
112: 65, 32, 23
113: 55, 26, 19
114: 335, 152, 113
115: 85, 37, 28
116: 115, 48, 37
117: 35, 14, 11
118: 355, 136, 109
119: 30, 11, 9
120: 365, 128, 107
121: 185, 62, 53
122: 25, 8, 7
123: 95, 29, 26
124: 385, 112, 103
125: 65, 18, 17
126: 395, 104, 101
127: 4, 1, 1

0: 13, 0, 5
1: 13, 0, 5
2: 21, 0, 10
3: 7, 0, 4
4: 8, 0, 5
5: 47, 3, 28
6: 23, 3, 13
7: 15, 3, 8
8: 22, 6, 11
9: 43, 15, 20
10: 7, 3, 3
11: 501, 224, 211
12: 249, 116, 103
13: 165, 80, 67
14: 123, 62, 49
15: 489, 256, 191
16: 81, 44, 31
17: 483, 272, 181
18: 60, 35, 22
19: 53, 32, 19
20: 237, 148, 83
21: 471, 304, 161
22: 3, 2, 1
23: 481, 314, 185
24: 354, 226, 155
25: 1389,866, 685
26: 227, 138, 125
27: 267, 158, 163
28: 327, 188, 220
29: 61, 34, 45
30: 627, 338, 505
31: 1227,638, 1075
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Figure 1: Distribution coefficients as in Floyd-Steinberg error-diffusion algorithm (left), in Shiau and Fan’s algorithm (middle), and in the
proposed variable-coefficients error-diffusion algorithm (right).
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(e) blue
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Figure 2: A light gray uniform patch halftoned with the serpentine-path Floyd-Steinberg E-D algorithm (left) and with the proposed algorithm
(right). The blue noisie profile is taken from [23].



Figure 3: A grayscale sample produced with different halftoning techniques, printed at 100 dpi.Top row, left: clustered-dot dither, cluster
size = 32 pixels; middle: Bayer’s dispersed dither [3]; right: Rotated dispersed dither by Ostromoukhov et al. [17].Second row, left: Shiau-
Fan E-D [21]; middle: Floyd-Steinberg E-D [7]; right: our new E-D method.Third row, left: halftoning with space-filling curves by Velho
and Gomes [26, 27], cluster size=1 (Courtesy of Luiz Velho); middle: Floyd and Steinberg filter with 50% random weights processed on a
serpentine raster [23] (Courtesy of Robert Ulichney); right: Marcu’s roadmap halftoning [15] (Courtesy of Gabriel Marcu).Bottom row,
left: DBS-based halftoning [2] (Courtesy of Jan Allebach); middle: void-and-cluster [24] (Courtesy of Robert Ulichney); right: blue noise
mask [16] (Courtesy of Kevin Parker).
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Figure 4: Grayscale ramps produced with our method, compared with very good E-D algorithms: Floyd-Steinberg E-D [7] (public domain)
and Shiau-Fan E-D [20, 21], (proprietary). Images are shown here at typical display resolutions: 75 dpi (above) and 100 dpi (below).
Highlighted are the key levels.




